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The paper presents a model for the squeezed film damping, the resistance of the holes, and the
corresponding spring forces for a periodic perforated microstructure including the effects of
compressibility, inertia, and rarefied gas. The viscous damping and spring forces are obtained by
using the continuity equation. The analytical formula for the squeezed film damping is applied to
analyze the response of an ultrasonic transducer. The inclusion of these effects in a model
significantly improves the agreement with measured results. Finally, it is shown that the frequency
dependence of the total damping and total spring force for a cell are very similar to those
corresponding to a rectangular open microstructure without holes. A separate analysis reveals the
importance of each particular correction. The most important is the compressibility correction; the
inertia has to be considered only for determining the spring force and the damping force for

sufficiently high frequencies. © 2008 Acoustical Society of America. [DOIL: 10.1121/1.2918542]

PACS number(s): 43.38.Bs, 43.35.A¢ [AJZ]

I. INTRODUCTION

Recent progress in micromachining technology has en-
abled the fabrication of microelectro-mechanical systems
(MEMS), such as microphones, microaccelerometers, pres-
sure sensors, switches, mirrors, tunable interferometers, ul-
trasonic motors, resonators, etc. MEMS devices often use
parallel plate electrodes as the capacitive sensing and elec-
trostatic actuation mechanisms. In order to increase sensitiv-
ity for sensing and to increase force for actuation, designers
try to increase the electrode area and decrease the gap be-
tween plates. This type of device typically requires etch
holes to reduce the time required to release the microme-
chanical structure during the etching of sacrificial materials.
Therefore, the study of a thin air layer being squeezed be-
tween a moving plate and a perforated backplate, referred to
as a perforated planar microstructure, is important in many
MEMS.

As the movable electrode displaces sinusoidally, the
sinusoidal backforce on the plate due to the air separating it
from the backplate has two components:1 The viscous damp-
ing force, which is in phase with velocity, and the spring
force, which is in phase with the plate displacement.

Viscous damping is a critical factor for many MEMS
transducers and actuators. In many applications sensors re-
quire low damping in order to achieve sufficient sensitivity
of the system under a given driving force. In the case of
microphones, the mechanical-thermal noise is often one of
the limiting noise components. The magnitude of thermal
noise depends only on temperature and the magnitude of
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mechanical damping.®> Consequently, high viscous damping
is also associated with large mechanical-thermal noise. Many
devices need to be damped for stable operation. Therefore, in

designing a MEMS device, the effects of viscous damping |

must be taken into account at the earliest stage.3 The efficient
etching, the proper value of the viscous damping, the control
of the structure stiffness, and the electrical sensitivity are all
directly influenced by the holes on the backplate. Conse-
quently, MEMS design requires a comprehensive under-
standing of the micromachined perforated systems and their
dynamic behavior.

While viscous forces dominate the mechanical behavior
of planar microstructures at small velocities, the compress-
ibility of the gas and inertial forces become important factors
in determining the spring force at higher frequencies. The
dynamic stiffness, the damping coefficients, and the transi-
tional frequencies in compressible viscous thin films have
been analyzed previously for the case of infinite strips, thin
annuli, and circular plates. A detailed review was given by
Andrews, Harris, and Turner.* In the case of perforated pla-
nar microstructures a similar analysis can be performed for
mechanical structures containing a periodic system of holes.
While the periodic hypothesis proves valid only in the case
of infinite plates, the edge correction introduced in Ref. 5
permits one to assume periodicity (with a certain precision)
for the inner cells of a finite domain containing a square web
of aligned holes. Therefore, the theory developed in this pa-
per can be applied to analyze real structures of a general
shape.

In Sec. II the squeezed film damping is analyzed by
taking into consideration the inertia, compressibility, and rar-
efaction effects. In the case where the basic domain is ap-
proximated by an annulus, the solution is obtained analyti-
cally. In Sec. Il B the formulas obtained are applied to the
analysis of the ultrasonic transducer developed by Oppen-
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heim, Jain, and Greve in Ref. 6. Consideration of compress-
ibility, inertia, and rarefied gas effects reduced the error in
predicting the quality factor of the damping of the diaphragm
of the transducer from 48% to 14% as compared with the
measured value.’

In Sec. IV we first obtain a model for the direct resis-
tance of a hole. The determination of the rim pressure p; is
complicated by the compressibility of the gas and requires
the consideration of the equation of continuity. Once the rim
pressure is obtained, the total damping (and correspondingly
the spring force) can be obtained by adding the squeezed
film damping and the hole resistance under their complex
form.” The example considered in Sec. IV C shows that the
frequency dependence of the damping force and spring force
for a cell are very similar to the corresponding elements de-
termined by Veij ola® for the case of rectangular plates with-
out holes. Separate analysis of each special effect (compress-
ibility, inertia, and rarefaction) shows that the most important
is the compressibility factor. The inertia modifies the spring
force and the damping coefficient only at high frequencies
while the rarefaction correction has to be considered for gaps
significantly thinner than 2 um.

II. SQUEEZED FILM DAMPING

The complex three-dimensional (3D) motion of the air
in a perforated planar microstructure can be decomposed in
two simpler flows: a quasi-horizontal flow in the gap of the
microstructure and a vertical (Poiseuille type) flow in the
cylindrical holes. The presence of the holes implies two ef-
fects: a “direct” resistance of the holes obtained by adding
the shear stress effect on the wall of the pipe (hole) and “an
indirect resistance of holes” which changes the rim pressure
(in the quasi-horizontal flow) from the value zero (corre-
sponding to the external pressure) to a certain value “p;”
determined again by the resistance of the holes (see Ref. 5).
The quasi-horizontal flow includes the squeeze film flow,
corresponding to the zero pressure condition on the rim of
the holes, and also the indirect hole resistance contribution
due to the change of the pressure boundary condition to p;.
In this section both components are determined simulta-
neously.

A. Equations of the problem

In order to study the viscous damping in the gap of a
planar microstructure we consider the continuity and the mo-
mentum equations for a viscous compressible gas. " The Sys-
tem has to be completed by a state equation. The relationship
between the pressure and density at any point in the gas is
assumed as described by a polytropic process with exponent

ny

pp "r=const.

In the case where the plates are metal having a high conduc-
tivity or the relative velocity of the plates is relatively low,
the film will be isothermal and .= 1. If the relative veloci-
ties are-very high the process-will- approach an adiabatic
condition and 7., equals the ratio of the specific heats (n,
=1.4 for an adiabatic process at ambient conditions).
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FIG. 1. A periodic perforated planar microstructure.

It is helpful to recast the equations using dimensionless
variables. As the domain is the narrow air gap between the
two plates (Fig. 1), we will use different scales in the x, y
directions (parallel to the plane of the microstructure) and the
z direction. Thus, d,, the distance between the plates at equi-
librium, will be used as a scale for the z-axis and Ly, a
characteristic length connected to the planar domain for the
other directions. We suppose that e=dy/Lg is a2 small param-
eter. To the lower order in € and for harmonic oscillations (of
frequency w/24r) the system describing the motion of the gas
can be written as in Ref. 7

v op

ey I o
3ZZX+ZK U, = P (¢))
& 8
24 iR, = L @)
0z dy
dp
—=0, 3
oz ' ®)
V.v- zlz—p 0, 4)

where

pw
12 K do\/ —
o= Padz 0 ,LL

p is the equilibrium density of the gas, u the viscosity, and
P? is the ambient pressure (azm). If V is a characteristic
velocity of the microstructure plane, the characteristic pres-
sure is P0=,u,V0Lo/d(2,. Hence, the total physical pressure is

PPRYYS = Pa . Pop(x,y)e ",

The squeeze number o measures the degree of compression
of the fluid in the gap. If o is close to 0 (low frequency) the
air film obeys nearly incompressible viscous flow; at very
high frequencies the fluid is essentially trapped in the gap
and behaves like a spring.

B. Boundary conditions for gas velocity and pressure

If the gap thickness is comparable to the mean free path
of the gas molecules or the pressure is lower than the ambi-
ent pressure, the tangential velocity of the fluid at the bound-
ary is no longer strictly zero, which is called the slip-flow
effect (gas rarefaction). The slip velocity on the boundary
gives rise to a decrease of the viscous forces in the squeezed
air film.
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For including the gas rarefaction in this analysis we con-
sider the slip velocity conditions at solid boundaries

1 vy, 1
vxx,y,ig =+KCh¢9z ,y,i-i’

1 _ . du 1
vy<x,y, = 5) == chgzz(x,y, * 5),

Here K, is the Knudsen number introduced by Veijola in
Ref. 8 as a measure of the rarefaction

A
dy’

®)

Kyp=0p

N is the mean free path of the gas molecules (\=0.068
X 10%/P* at ambient temperature and pressure P%). The slip
coefficient o, for the diffuse specular scattering model,” can
be written as

2 -
op= Ta[1.016 ~0.1211(1 - )],

where « is the momentum accommodation coefficient. For
diffuse scattering, =1 and ap=1.016. Also, in the direction
normal to the plates the impenetrability condition yields

1 1
vz<x,y,— 5) =0, vz<x,y,5) =w. (6)

By w we denote the dimensionless Oz component of the
velocity of the mobile surface, assumed a known quantity
(F™S=€Vyw). The classical nonslip condition can still be
obtained for K4 =0. Therefore, the present analysis proves
true in the continuum flow regime and in the slip flow do-
main as well.

In the case where the viscous loss through holes is not
neglected, the pressure at the rim of the holes is assumed to
be equal to a constant unknown value p;. This gives the
condition

p=p;ontherim JDp. @)

The pressure gradient is zero in a direction that is normal to
any line of symmetry of the planar microstructure. On all
symmetry lines, (denoted by SDy) we can then write a new
boundary condition as

9p

on =0 on 8DN (8)

We suppose that the holes (of circular form of r-radius)
are located at the vertices of a regular system of equilateral
triangles of side length I3(in the case of a staggered system of
holes) or in the vertices of a regular system of squares, of
side length I, for the case of aligned holes (Fig. 2). We take
advantage of the repetitive pattern of the perforated plate and
define a “cell” as the space occupied by a hole and its sur-
rounding web space (the plane region where the hole is col-
lecting the flow). The basic domain D is defined as the plane
region obtained from a cell excluding the hole. The external
boundary of the basic domain is a regular hexagon or a
square -and the inner boundary is the rim of the hole.
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FIG. 2. The cell, the influence domain of a hole, and its circular approxi-
mation.

C. Reynolds’ equation including inertia and rarefied
gas effect

Since the pressure p(x,y) does not depend upon z [Eq.
(3)] the differential Egs. (1)—(4) can be integrated giving the
solution

(5y.2) = i 5p< cos(\/-Kz)/cos(\/—K/Z) 1) ©

SN = R a\ 1 i KK tan(ViK/2) ’
_idp cos(\/;Kz)/cos(\/;K/Z) )

yy(x,3,2) = e ay<1_ VKoK an(VK72) -1 (10)

: Fp &P 1
y(x,3,2) = szz—p<Z+ ;) Kz(a pz + o'?yp> X {z+ >
_ sin(\/EKz)/cos(\/;K/Z) + tan(\/;K/Z) (11)
(Vik/2)[1 = ViK 4K tan(Vik/2)] |

Here Vi= (1+i)/ V2. The second condition (6) y1elds the
equation for the pressure

Fp Fp
T3t o2
Ix? ady

+a?p =12Mw. (12)
Here we have used the notations

o =iMoin.,,
(13)

- tan(\/l-'K/Z) _ )_1
M ‘12K(ﬁK/z[l—\/EKcthan(\/EK/z)] o

Equation (12) is the Reynolds’ equation for solving the
squeezing film problem in the case of a compressible gas
accounting also for the influence of inertia and gas slip on
the plates.

Simple numerical calculations show that M=1 is a good
approximation for frequencies less than 100 kHz, while the
expression M=1-iK?/10 can be used for frequencies less
than 10 MHz.

lil. ANNULAR APPROXIMATION OF BASIC REGION

A. Determination of squeeze-film damping and
hole indirect resistance

We consider an approximation of the outer boundary of
the basic domain by an equivalent circle having the same
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area (Fig. 2). In this case the domain D is an annulus of r;
<r, radii. The radius of the outer circle r, is connected with
the distance [ between the holes by

7, =0.52515 or rp =L\,

due to the equality of areas. This approximation works well
only in the case of small i 1nner radius r; as compared with the
linear dimension of the cell.” We take as a reference length
Lo=r, and denote ry=r;/r,. In polar coordinates Eq. (12)
then becomes

14
——(r—p>+ap 12Mw, for rp<r<1l. (14)
ror\ odr

The boundary conditions for the function p(r) are
dp
plro=p;, —-(1)=0. (15)
ar

The solution of Eq. (14) satisfying the conditions (15) can be
written as

12n.w
=22 (117

¥;(a)Jo(ar) —Jl<a)yo<ar) ]
Y1(a)o(ary) = Ji(@)Yo(ary) |
where p1=p‘fw and Jy, Jq, Yy, Y are the Bessel functions of

the first and second kind.
‘We have also

(16)

f f p(dxdy =—12aMC(a,ry)w, 17
Dy
where

0
p
Cla,re) = CO(a,rg) - u—;‘lc(l)(a, 7o),

2ry J1(@) Y (arg) - Y1(a)J;(ary)
a Yi(@)Jy(ary) - Ji(a)Yo(arg)

1
C(O)(a,r0)=—2<
p

-1+ r%),
(18)
2r011(a)Y1(ar0) Yi(@)Ji(ary)
a Yi(a)Jo(arg) - J1(a)Yo(ary)

CW(a,ry

The total pressure on the domain Dj in Eq. (17) contains two
terms: the first term corresponding to CO(a,r) is the
squeezed film damping and the second one, involving the
function C(l)(a,ro), is the indirect resistance of the holes.

In the case |a?| < 1, which corresponds to a weak com-
pressible fluid and low to moderate frequencies, where the
power series expansion can be used

2ry Jy(@)Y;(arg) — Yi(a)Jy(aro)
24 Yl(Of)Jo(aro) - Jl(a)YO(aro)

=1-ra+cpa?+ciat + 0(ed),

where
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2 4
s 3 rg 1
Co(?‘o) EO' '8‘—’82—511'17'0,
11 57 117 rg 3
—_————— ZInry+—(n ry)?
A=~ T6 " ea 32 T3 ( ro
—?f-lnro.
Therefore,

‘ COa,rg) = co(rg) + c1(rg)a? + O(a?),
(19)
CWa,rg) =1 =3+ colrg) @ +c1(ro)a* + 0(F).
The total force on the domain D due to the squeeze-film
damping and indirect hole resistance can be written as

F=12"5
dy
If the first boundary condition (15) is changed to p(ry)=0,
Eq. (20) gives only the squeeze-film damping.
For an incompressible fluid (@=0) and for small or
moderate frequencies, the resulting expression for the
squeeze-film damping reduces to

12 1, 1 3
Fie= Zf r2< zrﬁ—grg—zlnro—é-)wphys, (21)

which coincides with Skvor’s formula.

10,11

B. Application to analysis of an ultrasonic transducer

The ultrasonic transducer developed in Ref. 6 consists of
an array of diaphragms connected in parallel. The capacitive
diaphragm has a hexagonal shape (of 45 um side length) and

contains 5 um square holes spaced on a square 30 um grid. -

The gap between upper and lower polysilicon electrodes is
2.0 um and the upper polysilicon electrode thickmess is
2.0 um. The measured resonant frequency is 3.47 MHz.

In order to estimate parameters for a single degree of
freedom (SDOF) dynamic model, the hexagonal diaphragm
was replaced with a simply supported circular diaphragm
having the same resonant frequency. The equivalent SDOF
mass is m*=4.87X 10712 kg, the SDOF spring constant k*
=2.33X 10> N/m, and the equivalent area is S*=1.06
X 10~° m? for a single diaphragm.

The damping is characterized by two terms. The first
term describes the contribution of the radiation of ultrasonic
energy. The radiation of acoustic energy across the equiva-
lent SDOF area S* yields a quality factor given by

m*k*

75 =233,

Oradiation =

where the acoustic impedance of air Z,;=430 N—s/m? and
where m*, K*, and $* from the SDOF model have been used.

The other contribution to the damping comes from the
squeeze-film damping. In Ref. 6 the squeeze-film damping
was calculated by using the lubrication approximation for an
incompressible fluid. In the model, each grid square was re-
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placed with a circular piston traveling within a cylinder, hav-
ing outer radius ;=16.9 um and a central circular vent hole
of inner radius r,=2.82 um, preserving the area in one grid
square. The analysis, similar to Skvor’s approach, yields the
total force acting against the face of the piston as F=3.65
X 1076 wPh¥s, describing an equivalent viscous damper with
dashpot constant c=3.65 X 1078 N-s/m.

In the model, the authors consider the five etch holes
nearest the center to represent the location of discrete dash-
pots that are transformed into one equivalent SDOF dashpot
by summing the product of each dashpot constant by the
square of the mode shape at each etch hole location. In this
geometry, the equivalent SDOF dashpot constant is c*
=4.15X 107 N—-s/m. The one vent hole at the center, where
the mode shape amplitude is 1.0, is the dominant contributor
to the equivalent dashpot constant, because the diaphragm
velocity at the four next nearest dashpots, each 30 um away
from the center, is very low. The quality Q factor associated
with the squeeze film damping effect for the SDOF is then
obtained as

%

m .
quueeze—ﬁlm = wO—C‘*— =29.1 ’ (22)

leading to a predicted combined Q value calculated as

[ 1 1 ]-l
0= + =25.9. (23)
Qradiation quueeze-ﬁlm

The measured value of the quality factor is Qp.=49.6 at
atmospheric pressure.

By taking into consideration the compressibility of the
air, the inertia effect and the rare gas effect formula (20)
(corresponding to the case p;=0) yields the total force acting
against the face of the piston as F=2.6X 1076 wPh¥s, In the
given geometry the equivalent SDOF dashpot constant is
¢*=2.96 X 10" N—s/m. Correspondingly, Qsqeeze-fim deter-
mined by formula (22) has the value 35.9, which introduced
in formula (23) gives the predicted combined quality factor
0=42.44,

Thus the consideration of compressibility, inertia, and
rare gas effects reduced the difference between the predicted
and measured quality factor of the damping of the diaphragm
of the transducer from 48% to 14%.

iv. TOTAL VISCOUS DAMPING AND SPRING FORCE
A. Direct hole resistance

In this section, we extend the results presented above by
determining the direct resistance of the flow through holes.
As in the above formulation, the effects of compressibility,
inertia, and gas rarefaction will be accounted for. The last
effect is determined by the breakdown of the continuum be-
havior of the gas determined by the narrowness of the holes
or by the drop of the pressure under the ambient pressure. In
order to determine the “resistance of the holes” we assume a
pressure p; along the upper edge of a perforation and model
a plate hole as a pipe of diameter 2r; and of length % equal to
the plate thickness. In this case the only nonvanishing com-
ponent of velocity in the hole is v, (fully developed Poi-
seuille flow).* We can then write the equation
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v=u/ p being the dynamic viscosity. In polar coordinates this
becomes

li(,i&) Lo _p (24)

rar\ dr v ° uh

an equation similar to Eq. (14). Its solution, finite in the
domain r<ry, also has to satisfy the following boundary
condition on the pipe wall r=r:

av,(ry)
u(ry) == Kpri— = (25)
ar
wheré
Kpy=0p—

r

is the other Knudsen number introduced in Ref. 13 as a mea-
sure of the rarefaction in a pipe.
The solution of Eq. (24) satisfying the condition (25) is

71 Jo(Br) :|
1- s 6
iwph{ To(Bro) — Kafrid1(Bry) (26)

where B?=iw/v. The total volume rate of flow results by
integration in the form

v, =

Qh=- 7;” 12111([3 ). @7)
where

H(Bry) = Gr )z(G(,Brl) 1),

G(ﬂ 1) _ Jl(Brl)

B 110(/3r1) KPBriJ(Bry)
The wall shear stress can be shown to be

dv,
T== /-L—E(rl)

By using Eq. (26) for the velocity this becomes

Pl"l

G(,B V- (28)

The direct resistance of the holes F” is obtained by integrat-
ing the wall shear stress (28) along the boundary of the pipe.
There results

Fly=—mrip,G(Bry). (29)

Remark 1 In the case where the thickness of the plate h
and the radius ry are of comparable dimensions a correction
has to be made for the effect of the end of the hole. Sharipov
and Seleznev, in Ref. 9, have shown that this effect can be

included in Eq. (29) by replacing the length h of the hole

with

. heff=h+37ﬂ"1/8.

D. Homentcovschi and R. N. Miles: Model for damping and spring force 179




Finally, the total viscous damping on a cell is obtained

by adding the two viscous forces given by formulas (20) and
(29)

FT'=F'= [IZTMC(CY ro) — mripdG(Bry) |wPhe.
0
(30)

B. Determination of rim pressure p;

The compressibility of the gas makes the determination
of the rim pressure p; more difficult. Thus, the linearized
continuity Eq. (4) can be written in dimensional variables as

iw
P
The integration of Eq. (31) over the 3D space D, between the

microstructure plates corresponding to a cell (in its cylindri-
cal approximation) yields

lwdo
v-ndS=
D3 DUD1

Here D is the basic 2D domain (considered on the lower
plate) and the plane domain D; corresponds to the holes’
entrance. Hence,

V-v=——mp. (31)

TraWPhYS — f f v (x,y,0)dxdy
Dy

fwd
=;yPg{ f fD pdsW%pl}. (32)

Now, defining p1=p?wPhys, and noting that the integral in
left-hand side of Eq. (32) is given by formula (27) and the
integral in the right-hand side by formula (20), we obtain
4
hH(,Br 1)171

iwdy 12,u,r§MC(O)
|
F' 2 C(l
d

,2 81
+r1p1

Finally, the rim pressure is given by
2+ 12iursQMCc©

hys

P B (S uh) — i QLurCO + &A1
where
w
Q= .
nyP”d(Z)
C. Example

As an example we consider a capacitive diaphragm
(having the velocity 1 m/s) of thickness 2.0 um having a
regular pattern of holes of radius 7,=2.82 um and having the
equivalent radius of the extemal circle r;=16.9 um. The gap
equals 2 pm. The calculation of the total force on a cell was
performed in the range of frequencies from 100 Hz to
1 MHz. In order to clarify which of the effects studied in this
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FIG. 3. The variation of the total démping and spring forces for a cell with
frequency in the case of slip and no-slip boundary conditions.

paper are of most importance to designers, some of the re-
sults are shown in Fig. 3, where the continuous line repre-
sents the damping force and the dotted line the spring force
in the case where all the effects (inertia, compressibility, and
slip on the boundary due to rarefaction) ‘are included. The
case of the no-slip boundary condition (without the rarefac-
tion correction) is also presented in Fig. 3 as (—-—) for the
damping force and (----) for the spring force. In this case
the differences are very small. In the case of smaller gaps
this correction could be more important. The damping force
dominates at low frequencies. The cutoff frequency is
slightly lower than 3 kHz. For higher frequencies the spring
force dominates. The graph is very similar to Fig. 2 in Veijo-
la’s paper,8 where the author has considered a modified Rey-
nolds equation including the effect of inertial forces and rare
gas in the relative flow-rate coefficient and has applied this
equation to a squeezed-film damper model for a rectangular
geometry. This shows that a cell of a regular perforated mi-
crostructure has the same mechanical behavior as a function
of frequency as an open rectangular (unperforated) plate. To
investigate the influence of compressibility we plotted in Fig.
4 the same elements as in Fig. 3 in the case of incompress-
ible fluid. The damping force is in this case independent of
frequency while the spring force is increasing linearly with
frequency. For all the frequencies between 100 Hz and
1 MHz the spring force is much smaller than the damping
force. There is a small increase in damping force due to the
rarefaction effect but, practically, the spring force is not af-
fected by the slip condition on solid boundaries. The effect of
inertia can be also seen in Figs. 3 and 4 as a dependence on
frequency. In the case of incompressible fluids and also for
small frequencies in the compressible case, the damping
force is independent of inertia.

V. CONCLUSIONS

This paper provides analytical formulas for the squeeze
film damping, the direct and indirect resistances due to holes,
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FIG. 4. The variation of the total damping force and spring force for a cell
with frequency for incompressible fluids in the case of slip and no-slip
boundary conditions.

and the corresponding spring forces for a periodic perforated
microstructure including the effects of compressibility, iner-
tia, and rarefied gas.

The total damping and spring forces are obtained by
using the continuity equation.

Consideration of compressibility, inertia, and rarefied
gas effects have reduced the error in predicting the quality
factor of the damping of the diaphragm of the ultrasonic
transducer analyzed in Sec. III B from 48% to 14% as com-
pared with the measured value.

The total damping and spring forces for a cell are very
similar to those corresponding to a rectangular open micro-
structure without holes. The separate analysis of each special
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~correction shows that the largest correction is given by ac-

counting for compressibility. The effect of inertia can be con-
sidered as important for the spring force and for the damping
for sufficiently high frequencies. The rarefaction correction
for the gaps larger than 2 um is very small.
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